Multiscale Analysis and Computation for Incompressible Flow

Thomas Y. Hou

Applied Mathematics

Caltech

Joint work with Danping Yang and Ke Wang

- The understanding of scale interactions for 3-D incompressible Euler and Navier-Stokes eqns have been a major challenge.
- For high Reynolds number flows, the degrees of freedom are so high that it is almost impossible to resolve all small scales by DNS.
- Deriving an effective equation for the large scale solution is very useful in engineering applications.
- The main difficulty in deriving effective equations is the lack of scale separation. There is a continuous spectrum of scales.
- Can homogenization theory based on scale separation produce any useful result?

- The purpose of this study is to derive a nonlinear homogenization result for the incompressible Euler equations.
- The nonlinear and nonlocal nature of Euler equations makes it difficult to construct a properly-posed multiscale solution.
- The key idea in deriving a multiscale solution is to use the Lagrangian description.
- The multiscale structure of the solution provides a critical guideline in constructing a general multiscale numerical method.

Formulation

We consider the 3-D incompressible Euler eqns

$$\mathbf{u}_t^{\epsilon} + (\mathbf{u}^{\epsilon} \cdot \nabla)\mathbf{u}^{\epsilon} + \nabla p^{\epsilon} = 0, \tag{1}$$

$$\nabla \cdot \mathbf{u}^{\epsilon} = 0, \tag{2}$$

with multiscale initial data

$$\mathbf{u}^{\epsilon}(\mathbf{x},0) = \mathbf{U}(\mathbf{x}) + \mathbf{W}(\mathbf{x}, \frac{\mathbf{x}}{\epsilon}).$$

 $\mathbf{u}^{\epsilon}(t, \mathbf{x})$ and $p^{\epsilon}(t, \mathbf{x})$ are velocity and pressure. We assume that \mathbf{U} and \mathbf{W} are smooth, $\mathbf{W}(\mathbf{x}, \mathbf{y})$ is periodic in \mathbf{y} and has mean zero.

• The question of interest is how to derive an effective (or homogenized) equations for the averaged velocity field as $\epsilon \to 0$.

Previous work by MPP

- The homogenization of the Euler equations with oscillating data was first studied by McLaughlin-Papanicolaou-Pironneau in 1985.
- To construct a multiscale expansion for the Euler equations, they made the assumption that the oscillation is convected by the mean flow.

$$\mathbf{u}^{\epsilon}(\mathbf{x},t) = \bar{\mathbf{u}}(\mathbf{x},t) + \mathbf{w}(\mathbf{x},t,\frac{\theta(\mathbf{x},t)}{\epsilon},\frac{t}{\epsilon}) + \epsilon \mathbf{u}_{1}(\cdot\cdot,\frac{\theta(\mathbf{x},t)}{\epsilon},\frac{t}{\epsilon}) + p^{\epsilon}(\mathbf{x},t) = \bar{p}(\mathbf{x},t) + \pi(\mathbf{x},t,\frac{\theta(\mathbf{x},t)}{\epsilon},\frac{t}{\epsilon}) + \epsilon p_{1}(\cdot\cdot,\frac{\theta(\mathbf{x},t)}{\epsilon},\frac{t}{\epsilon}) + p^{\epsilon}(\mathbf{x},t) = \bar{p}(\mathbf{x},t) + \pi(\mathbf{x},t,\frac{\theta(\mathbf{x},t)}{\epsilon},\frac{t}{\epsilon}) + \epsilon p_{1}(\cdot\cdot,\frac{\theta(\mathbf{x},t)}{\epsilon},\frac{t}{\epsilon}) + p^{\epsilon}(\mathbf{x},t) = \bar{p}(\mathbf{x},t) + \pi(\mathbf{x},t,\frac{\theta(\mathbf{x},t)}{\epsilon},\frac{t}{\epsilon}) + \epsilon p_{1}(\cdot\cdot,\frac{\theta(\mathbf{x},t)}{\epsilon},\frac{t}{\epsilon}) + p^{\epsilon}(\mathbf{x},t) = p^{\epsilon}(\mathbf{x},t) + p^{\epsilon}(\mathbf{x},t$$

where $\mathbf{w}(\mathbf{x}, t, \mathbf{y}, \tau)$, $\mathbf{u}_1(\mathbf{x}, t, \mathbf{y}, \tau)$, π , and p_1 are assumed to be periodic in \mathbf{y} and τ , and θ is convected by the mean velocity field $\bar{\mathbf{u}}$

$$\frac{\partial \theta}{\partial t} + \bar{\mathbf{u}} \cdot \nabla_{\mathbf{x}} \theta = 0, \quad \theta(\mathbf{x}, 0) = \mathbf{x} . \tag{3}$$

Previous work – continued

- Using multiscale expansion techniques, MPP obtained periodic cell problems for $\mathbf{w}(\mathbf{x}, t, \mathbf{y}, \tau)$, $\mathbf{u}_1(\mathbf{x}, t, \mathbf{y}, \tau)$, π , and p_1 .
- However, it is **not** clear whether the resulting cell problems for $\mathbf{w}(\mathbf{x}, t, \mathbf{y}, \tau)$, etc have solution that is **periodic** in both \mathbf{y} and τ .
- Additional assumptions were imposed on the solution of the cell problems in order to derive a variant of the $k \epsilon$ model.
- A more accurate ansatz which accounts for the oscillation in the characteristics may be needed.

• Our study shows that the oscillation is actually convected by the oscillatory velocity field:

$$\frac{\partial \theta^{\epsilon}}{\partial t} + \mathbf{u}^{\epsilon} \cdot \nabla_{\mathbf{x}} \theta^{\epsilon} = 0, \quad \theta^{\epsilon}(\mathbf{x}, 0) = \mathbf{x} . \tag{4}$$

- This becomes obvious when we formulate the
- 2-D Euler equations in vorticity form

$$\omega(\mathbf{x},t) = \omega_0(\theta^{\epsilon}(\mathbf{x},t), \frac{\theta^{\epsilon}(\mathbf{x},t)}{\epsilon}).$$

- It is not clear what is the multiscale structure of $\theta^{\epsilon}(\mathbf{x}, t)$ since its structure is coupled to the multiscale structure of \mathbf{u}^{ϵ} .
- ullet Further, if we formally expand $\theta^{\epsilon}(\mathbf{x},t)$ into

$$\theta^{\epsilon}(\mathbf{x},t) = \theta(\mathbf{x},t) + \epsilon\theta_1(\mathbf{x},t,\frac{\mathbf{x}}{\epsilon},\frac{t}{\epsilon}) + \cdots$$

then θ_1 would have O(1) contribution to $\bar{\mathbf{u}}$.

Lagrangian description of the Euler equations

- The key idea in constructing multiscale solutions for the Euler equation is to reformulate the problem using θ^{ϵ} as a new variable.
- The multiscale structure of the solution becomes very apparent in terms of θ^{ϵ} variable.
- This amounts to using a Lagrangian description of the Euler equations.
- Specifically, we introduce a change of variable from \mathbf{x} to θ : $\theta = \theta^{\epsilon}(\mathbf{x}, t)$.
- It is easy to see that the inverse of this map, denoted as $\mathbf{x} = \mathbf{X}(\theta, t)$, is the flow map:

$$\frac{\partial \mathbf{X}(\theta, t)}{\partial t} = \mathbf{u}^{\epsilon}(\mathbf{X}(\theta, t), t), \quad \mathbf{X}(\theta, 0) = \theta.$$

• In terms of θ variable, the vorticity has a simple expression:

$$\omega^{\epsilon}(\mathbf{X}^{\epsilon}(\theta, t), t) = \frac{\partial \mathbf{X}^{\epsilon}}{\partial \theta}(\theta, t)\omega_{0}(\theta, \frac{\theta}{\epsilon}) ,$$

where $\omega^{\epsilon} = \nabla \times \mathbf{u}^{\epsilon}$, and ω_0 is the initial vorticity.

• Velocity can be computed via the stream function, ψ , $\mathbf{u}^{\epsilon} = \nabla \times \psi$, and ψ satisfies

$$-\triangle_{\mathbf{x}} \psi^{\epsilon} = \omega^{\epsilon}$$
.

• In terms of the θ variable, we have

$$-\nabla_{\theta} \cdot \mathcal{A} \mathcal{A}^T \nabla_{\theta} \psi^{\epsilon} = \frac{\partial \mathbf{X}^{\epsilon}}{\partial \theta} (\theta, t) \omega_0(\theta, \frac{\theta}{\epsilon}) ,$$

where
$$\mathcal{A} = \frac{\partial \theta}{\partial \mathbf{x}} = \left(\frac{\partial \mathbf{x}}{\partial \theta}\right)^{-1}$$
.

• Using $\left|\frac{\partial \mathbf{x}}{\partial \theta}\right| = 1$, we can express \mathcal{A} in terms of $\frac{\partial \mathbf{x}}{\partial \theta}$.

Multiscale expansion of X and ψ

- We are mainly interested in obtaining an averaged equation for the well-mixing long time solution of the Euler equation.
- For this reason, we look for multiscale solutions of the following form:

$$\psi^{\epsilon} = \psi^{(0)}(t,\theta) + \epsilon \psi^{(1)}(t,\theta,\tau,\mathbf{y}) + O(\epsilon^2) ,$$

$$\mathbf{X}^{\epsilon} = \mathbf{X}^{(0)}(t, \theta) + \epsilon \mathbf{X}^{(1)}(t, \theta, \tau, \mathbf{y}) + O(\epsilon^2),$$

where $\psi^{(1)}$ and $\mathbf{X}^{(1)}$ are periodic functions with respect to \mathbf{y} . Here $\mathbf{y} = \theta/\epsilon$ and $\tau = t/\epsilon$.

Homogenized Equations

It can be shown that $\mathbf{X}^{(0)}$, $\mathbf{X}^{(1)}$, and $\psi^{(0)}$, $\psi^{(1)}$ satisfy the following homogenized equations:

$$\partial_t \mathbf{X}^{(0)} - \left(\nabla_{\alpha}^{\perp} \psi^{(0)} \cdot \nabla_{\alpha} \right) \mathbf{X}^{(0)} = 0, \quad \mathbf{X}^{(0)}|_{t=0} = \alpha,$$

$$\partial_{\tau} \mathbf{X}^{(1)} - \left(\nabla_{\alpha} \mathbf{X}^{(0)} + \nabla_{\mathbf{y}} \mathbf{X}^{(1)} \right) \nabla_{\mathbf{y}}^{\perp} \psi^{(1)} = 0, \quad \mathbf{X}^{(1)}|_{\tau=0} = \mathbf{0},$$
 and

$$\nabla_{\alpha}^{\perp} \cdot \left(\nabla_{\alpha} X^{(0)}^{\top} \nabla_{\alpha} X^{(0)} \nabla_{\alpha}^{\perp} \psi^{(0)}\right) + \nabla_{\alpha}^{\perp} \cdot \langle \mathcal{A}_{0}^{\top} \mathcal{A}_{0} \nabla_{\mathbf{y}}^{\perp} \psi^{(1)} \rangle = \nabla_{\alpha}^{\perp}$$

$$\nabla_{\mathbf{y}}^{\perp} \cdot \left(\mathcal{A}_0^{\top} \mathcal{A}_0 \nabla_{\mathbf{y}}^{\perp} \psi^{(1)} \right) = \nabla_{\mathbf{y}}^{\perp} \cdot \mathbf{W},$$

- Here $\mathcal{A}_0 = \nabla_{\theta} \mathbf{X}^{(0)} + \nabla_{\mathbf{y}} \mathbf{X}^{(1)}$. It can be shown that $|\mathcal{A}_0| \equiv 1$, implying well-posedness of ψ^1 eqn.
- \bullet Equation for \mathbf{X}^1 requires a solvability condition.

Solvability Condition and Projection

- Solvability condition for $\mathbf{X}^{(1)}$ requires that $\epsilon \mathbf{X}^{(1)}(\cdot, \cdot, \frac{\theta}{\epsilon}, \frac{t}{\epsilon}) \to 0$ as $\epsilon \to 0$.
- Let $\mathbf{u}_1 = \nabla_{\mathbf{y}} \psi^{(1)}$ be the cell velocity, and $\mathbf{Y}(\mathbf{y}, \tau)$ be the cell characteristic.
- We decompose the cell velocity field into two parts:

$$\mathbf{u}_1(\theta, t, \mathbf{y}, \tau) = \mathbf{u}_{11}(\theta, t, \mathbf{y}, \tau) + \mathbf{u}_{12}(\theta, t, \mathbf{y}, \tau).$$

ullet We need to remove the non-mixable part ${f u}_{12}$

$$\frac{1}{T} \int_0^T \mathbf{u}_{12}(\theta, t, \mathbf{Y}(\mathbf{y}, \tau), \tau) d\tau \to \alpha \neq 0$$

as $T \to \infty$.

Solvability – continued

- For Navier-Stokes equations, the viscosity and random forcing play the role to eliminate the non-mixable component of the flow velocity.
- Eliminating this non-mixable component is essential for the flow to be fully mixed, and to reveal certain universality and scale similarity.
- For inviscid Euler equations without external forcing, the projection step provides a systematic way to eliminate the non-mixable component.
- It can be also viewed as an acceleration method for the flow to be fully mixed.

Multiscale analysis in Eulerian frame

• Since small scale is propagated along the flow map, it is natural to look for multiscale velocity and pressure in the following form:

$$\mathbf{u}^{\epsilon}(t, \mathbf{x}) = \mathbf{u}(t, \mathbf{x}, \tau) + \mathbf{w}(t, \mathbf{x}, \tau, \mathbf{y}) + O(\epsilon),$$
$$p^{\epsilon}(t, \mathbf{x}) = p(t, \mathbf{x}, \tau) + q(t, \mathbf{x}, \tau, \mathbf{y}) + O(\epsilon),$$

where $\tau = t/\epsilon$ and $\mathbf{y} = \theta^{\epsilon}(t, \mathbf{x})/\epsilon$, and θ^{ϵ} is defined implicitly by

$$\theta^{\epsilon} = \theta(t, \mathbf{x}) + \epsilon \theta^{(1)}(t, \mathbf{x}, \frac{t}{\epsilon}, \frac{\theta^{\epsilon}}{\epsilon}) + O(\epsilon^2),$$

and satisfies the following evolution equation:

$$\theta_t^{\epsilon} + \mathbf{u}^{\epsilon} \cdot \nabla \theta^{\epsilon} = \mathbf{0}, \quad \theta^{\epsilon}(0, \mathbf{x}) = \mathbf{x}.$$

We assume that \mathbf{w} , and q have zero mean with respect to \mathbf{y} .

- The multiscale structure of the velocity field $\mathbf{u}^{\epsilon}(t, \mathbf{x})$ is now coupled to the small scale structure of $\theta^{\epsilon}(t, \mathbf{x})$.
- Naively, one may be tempted to assume that θ^{ϵ} has the following multiscale scale expansion:

$$\theta^{\epsilon}(t, \mathbf{x}) = \theta(t, \mathbf{x}) + \epsilon \theta^{(1)}(t, \mathbf{x}, \frac{t}{\epsilon}, \frac{\mathbf{x}}{\epsilon}) + O(\epsilon^2).$$

- This is wrong. Under this assumption, θ^{ϵ} could develop infinitely many scales in powers of ϵ for t > 0.
- It is important to define θ implicitly through

$$\theta^{\epsilon} = \theta(t, \mathbf{x}) + \epsilon \theta^{(1)}(t, \mathbf{x}, \frac{t}{\epsilon}, \frac{\theta^{\epsilon}}{\epsilon}) + O(\epsilon^2),$$

which has the same small scale structure as \mathbf{u}^{ϵ} .

Define $\nabla_x \theta^{\epsilon} = \mathcal{B}^{(0)} + \epsilon \mathcal{B}^{(1)}$. It can be shown that $\mathcal{B}^{(0)} = (\mathcal{I} - D_y \theta^{(1)})^{-1} D_x \theta;$ $\mathcal{B}^{(1)} = (\mathcal{I} - D_y \theta^{(1)})^{-1} D_x \theta^{(1)}.$

Substituting the expansion into the Euler equations, we get

$$\frac{1}{\epsilon} \left[\partial_{\tau} \mathbf{w} + \partial_{\tau} \mathbf{u} + \mathcal{B}^{(0)}^{\top} \nabla_{y} q \right] + \partial_{t} \mathbf{u} + \partial_{t} \mathbf{w} + ((\mathbf{u} + \mathbf{w}) \cdot \nabla_{x}) (\mathbf{u} + \mathbf{w}) + \mathcal{B}^{(1)}^{\top} \nabla_{y} q + \nabla_{x} (p + q) = 0.$$

This leads to the following result:

$$\epsilon^{-1}: \quad \partial_{\tau} \mathbf{w} + \partial_{\tau} \mathbf{u} + \mathcal{B}^{(0)}^{\top} \nabla_{y} q = \mathbf{0},$$

$$\epsilon^{0}: \quad \partial_{t} (\mathbf{u} + \mathbf{w}) + ((\mathbf{u} + \mathbf{w}) \cdot \nabla_{x} (\mathbf{u} + \mathbf{w}) + \nabla_{x} (p + q) + \mathcal{B}^{(1)}^{\top} \nabla_{y} q = 0.$$

Further, since \mathbf{w} and q have zero mean, we obtain by averaging the \mathbf{u} -equation w.r.t. \mathbf{y}

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla_x \mathbf{u} + \langle (\mathbf{w} \cdot \nabla_x) \mathbf{w} \rangle + \langle \mathcal{B}^{(1)}^\top \nabla_y q \rangle = -\nabla_x p,$$

Using the weak formulation, we can show that

$$\langle \mathcal{B}^{(1)}^{\top} \nabla_y q \rangle = \langle \mathbf{w} \nabla_x \cdot \mathbf{w} \rangle .$$

Thus the homogenized equation for **u** becomes

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla_x \mathbf{u} + \nabla_x \cdot \langle \mathbf{w} \mathbf{w} \rangle = -\nabla_x p,$$

$$\nabla \cdot \mathbf{u} = 0.$$

 $\mathcal{B}^{(0)}$ is determined from

$$\mathcal{B}^{(0)} = (\mathcal{I} - D_y \theta^{(1)})^{-1} D_x \theta;$$

 $\theta(t, \mathbf{x})$ is convected by the mean velocity.

$$\partial_t \theta + (\mathbf{u} \cdot \nabla_x) \theta = 0, \quad \theta|_{t=0} = \mathbf{x};$$

 $\theta^{(1)}(t, \mathbf{x}, \tau, \mathbf{y})$ as function of (τ, \mathbf{y}) is evolved by

$$\partial_{\tau}\theta^{(1)} + (\mathbf{w}\cdot\nabla_x)\theta = \mathbf{0}, \quad \theta^{(1)}|_{\tau=0} = \mathbf{0};$$

Again, we use a projection method to ensure no secular growth in $\epsilon\theta^{(1)}$

$$\mathbf{w} \leftarrow \mathbf{w} - \lim_{T \to \infty} \frac{1}{T} \int_0^T \mathbf{w} \ d\tau.$$

Extension to non-periodic multiscale data

• Let $\mathbf{x}_{\mathbf{j}}^f = \mathbf{j}h$ be the fine grid, and $\mathbf{x}_{\mathbf{j}}^c = \mathbf{j}H$ be the coarse grid. We write

$$\mathbf{u}_0(\mathbf{x_j}) = \mathbf{u}_0(\mathbf{x_j}^c, \mathbf{x_j}^f).$$

• Rescale the sub-grid cell problem of size H to a unit domain of order one. Let $\mathbf{y} = \mathbf{x}/H$,

$$\mathbf{u}_0(\mathbf{x}_{\mathbf{j}}) = \mathbf{u}_0(\mathbf{x}_{\mathbf{j}}^c, \mathbf{y}_{\mathbf{j}}/\epsilon),$$

where $\mathbf{y_j} = \mathbf{j}Hh$, and $\epsilon = H$

• Further, we define an average operator:

$$\langle \mathbf{u}_0 \rangle = \int_{[-\frac{1}{2}, \frac{1}{2}]^3} \mathbf{u}_0(\mathbf{x}, \mathbf{y}) d\mathbf{y}.$$

And decompose initial velocity field \mathbf{u}_0 as $\mathbf{u}_0 = U(\mathbf{x}) + \mathbf{W}(\mathbf{x}, \mathbf{y})$ with $\langle \mathbf{W} \rangle = \mathbf{0}$.

- We can use basically the same multiscale analysis to derive the homogenized equation.
- We make the same expansions for \mathbf{u}^{ϵ} and p^{ϵ}

$$\mathbf{u}^{\epsilon}(t, \mathbf{x}) = \mathbf{u}(t, \mathbf{x}) + \mathbf{w}(t, \mathbf{x}, \tau, \mathbf{y}) + O(\epsilon),$$
$$p^{\epsilon}(t, \mathbf{x}) = p(t, \mathbf{x}) + q(t, \mathbf{x}, \tau, \mathbf{y}) + O(\epsilon),$$

where **w** and q have zero mean, $\tau = t/\epsilon$ and $\mathbf{y} = \theta^{\epsilon}(t, \mathbf{x})/\epsilon$.

• The map θ^{ϵ} is given by

$$\theta^{\epsilon} = \theta(t, \mathbf{x}) + \epsilon \theta^{(1)}(t, \mathbf{x}, \frac{t}{\epsilon}, \frac{\theta^{\epsilon}}{\epsilon}) + O(\epsilon^2),$$

and satisfies

$$\theta_t^{\epsilon} + \mathbf{u}^{\epsilon} \cdot \nabla \theta^{\epsilon} = \mathbf{0}, \quad \theta^{\epsilon}(0, \mathbf{x}) = \mathbf{x}.$$

Remark on more general multiscale solutions

- The homogenization theory presented here can be used as a guideline to design a multiscale method for more general multiscale solutions.
- Small scales for velocity \mathbf{w} and pressure q are strongly localized.
- For general data, a local cell problem can be constructed to supply small scale information for the coarse grid model (as in MsFEM).
- Reynolds stress term $\langle \mathbf{w} \mathbf{w} \rangle$ is expected to reach local statistical equilibrium very fast in τ .

Numerical Experiments

We use direct numerical simulation (DNS) to check the accuracy of our multiscale analysis in 2-D.

The DNS is performed using 512 by 512 mesh. The multiscale computations use 64 by 64 on the coarse grid, and 32 by 32 for the subgrid.

Figure 1 shows the initial horizontal velocity in fine and coarse grid. It has no scale separation.

Figure 2 shows the horizontal velocity at t = 0.5 in fine and coarse grid.

Figure 3 shows the averaged velocity at t = 1 obtained by DNS and by homogenization respectively. The agreements are very good.

Figure 4 shows the Fourier spectrum at t=0 and at t=0.5 respectively. The spectrum from homogenization agrees very well with that from DNS.

Figure 5 shows the cross sections of the averaged horizontal velocity at t = 1 obtained by DNS and by homogenization respectively.

Conclusions

- The multiscale analysis provides a useful guideline to design effective coarse grid methods for incompressible flow.
- When the flow is fully mixed, we expect that the Reynolds stress term, i.e. $\langle \mathbf{w} \mathbf{w} \rangle$, will reach to a statistical equilibrium relatively fast.
- As a consequence, we may need to solve for the cell problem in τ for a small number of time steps.
- For homogeneous flow, it should be sufficient to solve one or a few representative cell problems to compute the Reynolds stress.
- This would offer an efficient coarse method that couples the large and small scales dynamically at a cost comparable to LES.